Noisy Chaotic Time Series Prediction Based on Wavelet Echo State Network
نویسندگان
چکیده
As a research focus of intelligence algorithm, the prediction of classic noiseless chaotic time series has a great development in recent years. However, the existing prediction models cannot get good performance for real-world chaotic time series because of the interference of noise components. In order to take full advantage of the property of real-world chaotic time series, the paper proposes a novel prediction model based on wavelet transform and echo state network (WESN). The basic idea of WESN is that firstly wavelet decomposition is used to separate the chaotic dynamics component and noise components, then the gotten components can be predicted by echo state network (ESN) independently, and finally the prediction results of time series are obtained by assembling the prediction values of all components. By using real-world sunspot time series for verification, the prediction results show that the proposed model has higher prediction accuracy by comparing with the models of direct echo state network (DESN), and direct echo state network (DSVM).
منابع مشابه
Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملChaotic Analysis and Prediction of River Flows
Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...
متن کاملChaotic Time Series Prediction Using Wavelet Decomposition
A novel approach to chaotic time series prediction is proposed. It is based on the use of the Discrete Wavelet Transform for obtaining a proper decomposition of the original sequence and standard multilayer neural networks for performing the prediction of the individual components. Simulation results for the case of chaotic signals obtained by integrating the Lorenz equations are presented, and...
متن کاملLandslide Displacement Prediction of WA-SVM Coupling Model Based on Chaotic Sequence
Confronted with the chaotic characteristics of landslide displacement and the deficiencies of traditional time series prediction model, the wavelet analysis -support vector machine model (WA-SVM) based on chaotic time series for landslide displacement prediction is proposed. On the basis of the analysis of chaotic characteristics, landslide displacement is decomposed in to components with diffe...
متن کاملA Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis
Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012